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On the symbolic dynamics of the Henon map 

P Grassberger, H Kantz and U Moenig 
Ph>sics Department. Unikersity of Wuppertal. D - 5600 Wuppertal I ,  Gauss-Strasse 20, 
Federdl Republic of German> 

Receiked 73 August 1989 

Abstract. We study a recently proposed method for finding all periodic orbits of the 
dissipative Henon map. For the 'canonical. values U = 1.4. b = 0.3 this method is found 
to give indeed the good symbolic dynamics proposed earlier by two of us. but it does not 
work as proposed for larger values of h. This is seen in two ways. Although the method is 
thus not universally valid. it can be used to study problems related to periodic orbits. We 
find that (for the usual values U = 1.4, h = 0.3) expressions for average quantities are not 
easily obtained precisely from periodic orbits. in agreement with recent claims. 

1. Introduction 

Being one of the simplest non-trivial dissipative systems showing chaotic behaviour, 
the Henon map (x, y )  -+ ( a  + by - .U?, .U) is often used as a testing ground in dynamical 
systems theory like the Ising model in statistical mechanics. It is now proven [l]  that 
there is a set of finite measure in the control parameters a and b for which the map 
has a strange attractor. But the proof covers only very small values of the constant b, 
and does not include the classical values U = 1.4, b = 0.3 studied in the original paper 
by Henon [2] and in most subsequent papers. 

For h = 0, the Henon map reduces to the logistic map x -+ a - .U'. Superficially, 
these two systems are rather similar. But while the logistic map has at  most one 
chaotic attractor for any given value of U ,  the Henon map can have arbitrarily many 
[3]. Thus, studying its symbolic dynamics might seem rather hopeless. Technically, the 
main problem is that the Henon map is not uniformly hyperbolic, thus creating both 
mathematical [3] and numerical [4] problems. 

Nevertheless, there are a number of results which-though mostly not proven-are 
believed to be true. 

The first result is that there exists a binary symbolic dynamics in cases where there 
is no chaotic attractor, and where the unstable orbits form a horseshoe. This was 
proven in [ 5 ] ,  but it is not very surprising as the dynamics on horseshoes is always 
comparatively simple. 

A less trivial (but only conjecured) result was obtained by two of us [6], when we 
found binary partitions which seemed to be generating partitions also when there is a 
strange attractor. The guiding principle therein was that a good partition should pass 
through all 'primary' tangencies between stable and unstable manifolds. This is the most 
straightforward generalisation of the fact that  generating partitions for the logistic map 
pass through the critical point. The resulting partitions for the cases (a, b )  = (1.4,0.3) 
and ( U ,  b)  = (1.0,0.54) are reproduced in figures 1 and 2. Their correctness was verified 
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Figure I .  The Henon attractor for (a. h )  = (1.4.0.3) together with part of the stable manifold 
of the fixed point at .Y = J' = 0.883.. .. Also shown is the generating partition proposed in 
[ 6 ] .  I t  passes through the 'principal' tangency points between stable and unstable manifolds. 
A tangency point is called principal if the sum of the curvatures of both manifolds at this 
point is smaller than at any of its images and pre-images. 

by comparing the metric entropy It with the Lyapunov exponent E.. Let us denote by 
p(sl, ..., s N )  the weight of the cylinder [7]  S = (s I...s,,,), and by 

the block entropies representing the average information needed to specify a symbol 
sequence of length N .  The differences 

= H,+l - H,,  

converge from above to the metric entropy, 

h ,  2 h,,+l 2 0 

h = lim h,, . 
,v-x 

Since by Pesin's identity h = i., we must have 

h,, 2 E. (1.5) 
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Figure 2. As figure I .  but for (a. b )  = (1.0.0.54) 

for all N .  For a wrong symbolic representation, (1.5) would be violated for sufficiently 
large N .  

The next important step was taken in [8], where the partition of [6] was shown to 
lead to a rather simple grammar. Since the topological entropy of the Henon map is 
less than ln2, some sequences must be ‘pruned’. In one-humped maps of the interval, 
the rule for this pruning is simple [9]: first, an ordering in the set of symbol sequences 
is defined, and then all sequences are forbidden for which any shift is larger than 
the ‘kneading sequence’, which is the sequence corresponding to the orbit starting at 
the critical point. According to [8], the pruning in the case of the Henon map is 
completely analogous. We have just to replace the single kneading sequence by a set 
of sequences corresponding to orbits starting at primary tangencies. The ordering of 
the primary tangencies on the broken curves in figures 1 and 2 corresponds then also 
to an ordering of kneading sequences, called the pruning front. While the correctness 
of this was verified in [8] for periodic orbits up to length 18, one of us [lo] verified it  
also with much higher precision for chaotic orbits. 

For (a ,b )  = (1.4,0.3), the monotonicity of the pruning front was first checked 
by computing 120 primary tangency points to very high precision (2 14 decimal 
digits). When ordered by their x coordinate, their kneading sequences were indeed 
monotonically increasing in the symbol sequence ordering of [8], and they indeed form 
a monotonic pruning front. Next, we used the partition thus defined to verify that the 
cylinders of length 22 visited by a very long chaotic trajectory are exactly those allowed 
by the pruning. Finally, we obtained the grammar for all allowed cylinders of length 
18 in terms of a list of forbidden words (see table 1) .  

In neither [8] nor [lo] was i t  verified for the less trivial case of large values of b, 
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Table 1. List of forbidden words in the s\.mbolic dynamics of the Henon map with a = 1.4 
dnd h = 0 3  

Length Forbidden word 

4 
4 
4 
7 
7 
8 
8 
8 
9 
9 
9 
I I  
I I  
12 
12 
12 
12 
I 2  
13 
13 
13 
14 
14 
15 
15 
16 
16 
17 
17 
17 
17 
17 
18 
18 
18 
18 

such as in figure 2 .  
A final result on topological dynamics of the Henon map was given in a recent 

paper by Biham and Wenzel [ l  I ] .  They claimed to be able to obtain in a systematic 
way all periodic orbits of the Henon map, in such a way that together with the 
orbits they also get the correct symbolic dynamics. More precisely, they proceed as 
follows. In order to obtain an orbit with period p ,  they consider a set of p variables 
x ( t )  = .xl ( t ) ,  ..., s , ( t )  with periodic boundary conditions, xp+,  ( t )  = .Y, ( t ) .  For these, they 
assume a set of coupled differential equations 

d.u,/dt = s,f,(x) (1 4 
with s, constants and with 
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It is obvious that f ,  = 0 if the .Y, form an  orbit of the Henon map. Thus, periodic 
orbits of the Henon map correspond to stationary solutions of (1.6) and vice versa. By 
searching in the space of couplings s, for stable fixed points of (1.6), one can thus hope 
to find all periodic orbits (this method for solving nonlinear equations is indeed very 
old, see e.g. [ 121). 

The surprising claims of [ l l ] ,  based on purely numerical grounds without any 
theoretical justification, are the following. 

( i )  A complete search in the s, is not needed. All periodic orbits are found with si 
either 1 or - 1 ,  i.e. one only has to search in the space of 2,' binary strings of length N .  

( i i )  For each symbol sequence S = s I .  ..., sp there exists at most one stable fixed point 
of (1.6). and all these fixed points have a common basin of attraction, characterised by 

( i i i )  Inversely, no  two different sequences SI and S 2  can give rise to the same fixed 
point. Since periodic orbits are dense on the Henon attractor, this means in particular 
that the sequences S define a generating partition and a good symbolic dynamics. For 
notational convenience, we shall in the following use the symbols 0 and 1 instead of -1 
and 1.  

(iv) System (1.6) has only fixed points as bounded solutions, i.e. it has no  limit 
cycles and no  strange attractors. Thus if a solution of (1.6) with si = k1 does not 
escape to infinity, it goes to a periodic orbit of the Henon map; if i t  does escape, then 
there is no orbit with this symbol sequence. 

If these claims were correct, they would be most useful. They would suggest that 
symbolic dynamics could be easily found along similar lines also for other systems like 
the conservative Henon map or  the standard map [13]. In these cases no  generating 
partitions are known as yet. Also, they would much ease the use of periodic orbits 
to estimate characteristic quantities of strange attractors like Lyapunov exponents, 
entropies, dimensions, and f ( x )  spectra [14]. In [8, 151, i t  was claimed that unstable 
periodic orbits are not only a useful theoretical tool. but that they can also be used 
very efficiently to obtain numerical estimates for these characteristics. 

In the next section, we shall test the claims of [ l l ] .  In section 3, we shall use their 
results to test the numerical convergence of the Lyapunov exponent and of generalised 
dimensions. 

l.Yl(0)l = A. 

2. Attractors of equation (1.6) 

Let us first check the claims of [ l  I] for the conventional parameters a = 1.4, b = 0.3 
which represent essentially the small-h (and thus the large dissipation) case. 

In [ l  I ] ,  all fixed points of (1.6) with p up to 28 were obtained by Runge-Kutta 
integration with step size dt = 0.1. The numbers N ( p )  of fixed points agreed up to 
p = 12 with the numbers of periodic orbits of the Henon map given in [8] (for p > 12, 
no  values were quoted in [SI). The estimate for the topological entropy obtained from 
these numbers: 

agreed reasonably well with the most precise previous value k = 0.4630 [6, 191. 
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We checked that the same numbers N ( p )  were indeed obtained with a simple Euler 
method with step sizes up to dt = 0.47, provided all s , ( O )  were taken to be 2 0.8. 
We also verified that-with these initial conditions-there were no limit cycles and no 
strange attractors. 

Finally, we checked that the induced symbolic dynamics coincides with that of [6]. 
All sequences S = s , , , , , , s p  agreed exactly with the symbol sequences obtained according 
to the partition given in [6], and no sequence forbidden according to table 1 did indeed 
occur. 

These results suggest that for ( I  = 1.4 and b = 0.3 the method of [ l l ]  gives indeed 
all periodic orbits with the correct symbolic dynamics. The absence of limit cycles and 
more complicated limit sets suggests furthermore that there should exist a Lyapunov 
function for (1.6). For h = 0 (i.e. for the logistic map), we have been able to prove 
that Lyapunov functions exist at least locally. Details are given in the appendix. For 
b # 0 we have no idea how a Lyapunov function should look. We might mention at 
this point that the Hamiltonian system mentioned in [ l l ]  is of no relevance to these 
results. 

In order to see whether the above results also hold for larger values of b, let us 
now turn to the case (a ,b )  = (1.0,0.54). 

While we found only fixed points as attractors of (1.6) for p I 7, we found a limit 
cycle for p = 8, for the symbol sequence S = 11 11 1010. By using different integration 
methods with different step sizes, we verified that this was not a numerical artefact. 
Also, we verified that near the centre of the limit cycle there was an unstable fixed 
point. Additional limit cycles were found for p = 16, p = 20 and p = 22. 

Our next finding contradicts point (iii) above. For period 22 we found that the 
same periodic orbit with x1 = -0.227626 and .y2 = 0.179386 is a stationary solution 
of (1.6) for two different symbol sequences, namely SI = 001 110101 1 1  110101 11010 
and S ,  = 1 1  1 1  10101 1 1  110101 11010. Thus, the method does not give a good symbolic 
dynamics, and simply counting the total number of fixed points of (1.6) does not 
necessarily give the correct topological entropy. 

This already casts doubt on the generality of the method of [ l l ] .  But it might be 
that one should simply disregard the limit cycles, with the fixed points still giving all 
periodic orbits of the Henon map. Also, i t  might be that one gets still a good partition, 
if one takes into account only the symbol sequence S with the fastest convergence, if 
more than one sequence leads to the same fixed point. 

Since we have no reliable alternative method of finding all periodic orbits of the 
Henon map, a direct check is not easy. But we can again compare the induced symbolic 
dynamics with that of [6]. This time we find that the two are not the same. In figure 3, 
we show all periodic points up to a given period, as obtained from (1.6). We represent 
(.Y,+,,x,) by a triangle ifs,  = -1, and by a cross i fs ,  = 1 .  Comparing with figure 2, we 
see a definite disagreement. 

To compare the two partitions indicated in figures 2 and 3 by broken curves, we 
calculated the metric entropies by estimating the weights of cylinder sets in a random 
aperiodic trajectory. From the plot in figure 4 of the entropy estimates h, (see equation 
(1.2)), we cannot prefer either partition. Both seem to converge to a value in agreement 
with the Lyapunov exponent i. = 0.263 I5 

Indeed, the difference between figures 2 and 3 does not mean that the two symbolic 
dynamics are incompatible with each other. Instead, we found that one can be 
translated into the other (within the limits of our accuracy) by a somewhat tricky 
recoding. 

0.000 02. 
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e - 4 - _a 

./- 
I - 2  0 1  -L 1 5  2 

0 0 5  1 0  - 2 0  -1 5 -1 0 - 0 5  
X 

X 

Figure 3. (a) Periodic points of the Henon map with a = 1.0, b = 0.54. obtained from (1.6) 
with p = 21. The broken curve indicates the partition induced by the symbol sequences 
SI .A,, Plots are given for .si = -1 (open triangles) and s, = 1 (crosses). (b)Enlargement of 
panel (a), with all orbits up to p = 27 included. 

Use S,, to denote a symbol sequence obtained from figure 2, and S,, to denote the 
symbol sequence of the same trajectory obiained from figure 3.  Then, the translation 
from S,, to S,, is achieved by the repkements  

0011 -+oooo ( 2 . 3 )  
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10111111 + 10001111 
10111110100 + 10001110100 

1011111010111111 -+ 100011101011111 
101111101011111010 -+ 10001110101111010 

where the ellipsis stand for rules beyond our accuracy. 
~~ 

0 361 
, 

0 3 4 ~  

hn 
0 3 2 -  

n 

Figure 4. Metric entropy estimates h, (equation (1.2)), obtained by using the partitions of 
figure 2 (open triangles) and of figure 3 (open circles). The broken line indicates the metric 
entropy h. estimated via the Lyapunov exponent. 

Due to the special grammar of the symbol strings, this recoding is indeed invertible, 
i.e. it represents a non-trivial entropy preserving map between symbol sequences. Let 
us illustrate this just with the first replacement, 0011 -+ 0000. In SGK, the sequence 
0000 is forbidden. Thus, any such sequence appearing in SB,,,, must have been produced 
by this replacement. For a sequence 100001 in S,,, the backtranslation is obviously 
unique. For 1000001, we have a priori the two possibilities 1000111 and 1001101. But 
the latter is forbidden in S,,, whence the backtranslation of 1000001 is also unique. 
More than five 0 are forbidden in SBw. For the other sequences, analogous arguments 
hold. 

We conclude thus that the method of [ I  11 fails for a = 1.0 and b = 0.54, but the 
failure is not dramatic. Even for this large value of b, (1.6) has hardly any other limit 
sets than fixed points, these still represent most of the periodic orbits of the Henon 
map, and (1.6) yields most orbits only once, attaching to them thus (nearly) unique 
symbol sequences. For smaller values of b ( h  I 0.3), i t  is either correct or it gives at 
least results which are better than those obtainable from any other method at present. 
We shall thus use the method in the next section to study periodic orbits of the Henon 
map in some more detail. 

3. Applications 

For a strictly hyperbolic attractor, the invariant measure can be approximated arbi- 
trarily closely by a sum of delta measures concentrated on the periodic orbits. When 
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using orbits of period p,  the weight of each point x on a periodic orbit is [16] 

where h ( x ) ,  the pointwise metric entropy, is the sum over all positive Lyapunov 
exponents. Notice that this is a strict equality, not just a proportionality, i.e. we have 

In our case, we have only one positive Lyapunov exponent. Introducing the generating 
function (or 'partition function') 

we can write this as limp+z In Qp(P = 1)  = 0. 
It is widely believed that these relations also hold for a not strictly hyperbolic 

attractor of the Henon type. In order to test this, we have plotted in figure 5 the values 
of Qp(P = 1) as a function of p .  We find that they seem indeed to converge towards 1, 
but the convergence is rather slow and irregular. 

2 . 8  

I , I 

0 4 8 12 16 20 24 28 

P 

Figure 5. Normalisation of the weights of periodic orbits, i.e. Qp(B = 1) .  

Most characteristic quantities of the attractor can also be expressed in terms of 
Qp(/3) .  For instance, the (average) Lyapunov exponent is given by 

In figure 6, we show the right-hand sides as functions of p .  Again we see that the 
convergence is not particularly fast. 
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0.8 1 
0 . 7 1  

0 . 6 1  

h i  

0 . 3 '  . o  

1 , , 
0 4 8 12 16 20 24 28 

P 

Figure 6. Lyapunov exponents obtained from periodic orbits. from equation (3.4) (open 
cirlces), and from equation (3.5) (full circles). The broken line represents the true value 

The strong anomalies in figures 5 and 6 at p = 13 are due to a pair of orbits with 
anomalously small Lyapunov exponents, 2(x) = 0.199 and 0.201, respectively. These 
seem to be the orbits with the smallest j.(x) among all periodic orbits. That orbits 
with very small Lyapunov exponents typically come in pairs is also found for other 
periods ( e.g., at period 16 with E. = 0.2600 and 0.26195) and for one-humped maps of 
the interval [lo]. This is easily understood: the two orbits have one point on opposite 
sides very close to a primary tangency (respectively to the critical point), apart from 
this their symbol sequences are the same. 

In addition to the Lyapunov exponent, also generalised dimensions and f ( r )  
functions can be obtained from Q,@) [4,8,15]. We found that in most cases the 
convergence was not better than for the Lyapunov exponent. To illustrate this, we 
show in figure 7 the finite-p approximations @,(A) to the scaling function denoted @(A) 
in [4]. They are obtained by Legendre transforming In Q , / p .  We see that functions for 
successive values of p converge only very slowly to the final asymptotic result. 

0.125 

0.100 

0.075 

- 0  025 

- 0  050 
0 2 0  0 2 5  0 3 0  0 3 5  0 4 0  0 4 5  0 5 0  0 5 5  0 

h 

IO 

Figure 7. Scaling functions @,,(A) for p = 24 (open circles), 25 (open squares), 26 (open 
triangles) and 27 ( open diamonds). 
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The convergence can be substantially improved by going over to dynamical i 
function is defined via the ‘grand canonical partition function’ i2 functions [17]. The 

as 

p= I 

and ; ( O , / j ’ )  = 1. I t  can be rewritten [17] as an infinite product over primitive cycles: 

Equations (3.2) and (3.5) are equivalent to the fact that C(z, / j ’ ) - ’  has a simple 
zero at zo(p)  with zo(l)  = 1 and dz,(/j’)/dp/,+, = i.. In figures 8 and 9, we show the 
approximations to zo( 1 )  (respectively to dz,(/j’)/dfllb=,) obtained from all periods up 
to a given p ,  and using the method called ‘cycle expansion’ in [17]. The latter consists 
of expanding C(z ,p ) - ’  into a power series in z ,  and truncating the series at the highest 
power whose cofficient is known. If all cycles with periods I p have been included, this 
power is just p.  

103r ’ 

1 02 1 

0 981 

1 1 

8 12 16 20 24 28 

P 

0 911 

Figure 8. Zeros zo ( f l  = I )  of the pth-order polynomial approximants of i - ](r , f l  = 1) 

As expected, we find much improved convergence. Still, the above casts serious 
doubts on the claims of [8,15] that periodic orbits provide a numerically convenient 
tool for studying strange attractors. Essentially, the irregularities in figures 6 and 7 
show that ‘curvatures’ [17] are very non-negligible due to the orbits with anomalously 
small Lyapunov exponents, and due to irregularities in the pruning rules. Both are 
due to the fact that the Henon attractor is not stricly hyperbolic. A more regular 
behaviour can be expected for strictly hyperbolic sets with simple symbolic dynamics 
(like horseshoe repellers), but for physically realistic attractors strict hyperbolicity seems 
to be the exception rather than the rule. These findings agree with the claims of [17] 
that fast convergence of C functions can only be expected if the topological dynamics 
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0 5 5 0 1  
I 

O 5251 
& A  

0 .  500' 
S A  

I 

i 
0 . 4 7 5  1 
0 . 4 5 0 t  

0 . 4 2 5  ~ . .  ... ... . ...... . ... .. ... . . ... .-.. .~ d - - . c 4 . 2 . .  .... 

s a  i 

i 

A , ,  a 

I 

0 L 8 1 2  16 20 24 28 
P 

1 0.400 

0 . 3 7 5  

0 . 3 5 0  

Figure 9. Lyapunov exponents obtained from ?zo(P) /SPJp=l  of the pth-order polynomial 
expansion of l - ' ( z , P ) .  the broken line corresponds to the value obtained from standard 
met hods. 

is understood and a proper encoding of symbol sequences is used, thus redefining the 
period of orbits. 

Finally, we want to comment on an observation made in [ l l ] .  These authors found 
that the topological entropy is constant in regions where the strange set is a repelling 
horseshoe. The related observation that simple grammars prevail in such regions was 
made in [8, 181. In all these cases the authors seemed unaware that this is a well 
known phenomenon: hyperbolic horseshoes are structurally stable and thus both the 
grammar of their symbolic dynamics and the topological entropy are constant under 
small changes. This is maybe best known for quadratic maps of the iterval, where, 
e.g., in the entire period-3 window one has the simple grammar saying that . . . L L . .  . is 
forbidden, giving for the topological entropy the logarithm of the golden ratio. 

4. Conclusions 

For the usual parameters of the Henon map, we confirmed the surprising claims of 
[ l  I ] ,  and we verified that the method proposed there gives the same symbolic dynamics 
as proposed earlier. The absence of any other limit sets apart from simple fixed points 
suggests strongly that there exist Lyapunov functions for the artificial dynamical system 
introduced in [ l  I ] .  For b = 0 we have indeed found Lyapunov functions for every fixed 
point of (1.6) for arbitrary a, but not for b # 0. 

For larger values of the paramter b in the Henon map, the method of [ l l]  breaks 
down: on the one hand we find limit cycles where there should be none according to 
[ l  11, on the other hand the induced symbolic dynamics is not unique and hence it does 
not correspond to a generating partition. 

Finally, applying the method where i t  seems to work, we find that expressions 
for dimensions and Lyapunov exponents based on periodic orbits show much slower 
convergence than proposed originally, in agreement with more recent work. 

Appendix. 

In this appendix, we restrict ourselves to the case b = 0, i.e. the forces reduce to 
f i ( X )  = xi+, - a  + xf. 
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Let c = ( < , , . . . , ( ~ v )  be a fixed point f , ( e )  = 0 of (l.6), i.e. a periodic orbit of the 
logistic map. We then define 

with 

€,, = 1 (A21 

!I' I .I' 

A1 = 2 JJ Ti LI I 
Notice that p is the Lyapunov number of c when considered as an orbit of x,, = a-xf,  
whence ,U > 1 for an unstable orbit. 

We claim that for any such unstable orbit, V , ( x )  is a local Lyapunov function of 
(1.6), if the sequence S is chosen such that s, = -sgn((,). 

For a proof, we have to show that: 
(i) Vs has a localminimum at the fixed point c of (1.6). This is obviously true since 

(ii) dV,/dt < 0 in some finite neighbourhood of this fixed point. 
Straightforward use of (1.6) and (1.7) with h = 0 gives 

all E are positive. 

.2 
d vs -- = 2 c(.tl+l + 2.Y,.tl)f,€, 

, = I  
dr 

h 

Using 

for real positive ci, we can estimate this as 

We use now that the symbol sequence S is such that si = -sgn(Si). Furthermore, as is 
easily checked, 

Thus, we can write 
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and all we have to show is that there exist positive ci such that 

Using (A3), this can be rewritten as 

It  is obviously true for c, = 21<,1/p. 

The above argument does not say anything about the sizes of the neighbourhoods 
on which V , ( x )  is a Lyapunov function. In particular, i t  does not explain why these 
neighbourhoods seem to overlap in one common domain. 

Finally, for stable orbits, p < 1.  a straightforward linear stability analysis shows 
that equation (1.6) can converge only if JJ, s, = -1, independent of the signs of the 5,. 
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